
Co
m

pu
te

r S
ci

en
ce

 w
it

h
Py

th
on

–X
II

1.24

Explanation:

In the above program, factorial of an inputted number is calculated.
The factorial of a number is the product of all the integers from 1 to that number.
For example, the factorial of 8 (denoted as 8!) is 1*2*3*4*5*6*7*8 = 40320.
Factorial is not defined for negative numbers and the factorial of zero is one, i.e., 0! = 1
To calculate the factorial, input of the number is accepted from the user. A factorial variable
‘fact’ is initialized to 1. A while loop is used to multiply the number to find the factorial. The
process continues until the value of control/loop var. i becomes equal to the inputted number
‘num’. In the last statement, the factorial of the given number is printed.

Example 17: Program to calculate the total amount payable by the customer on purchase of any
item with GST levied on it. Develop a user-friendly approach for the program using while loop.

1.10 STRINGS
In Python, a string is a sequence of characters enclosed within quotes. Python treats single quotes
and double quotes as equal. An individual character in a string is accessed using a subscript
(index). The subscript should always be an integer (positive/negative) and begin with 0.

H

0

–12

e

1

–11

l

2

–10

l

3

–9

o

4

–8

5

–7

P

6

–6

y

7

–5

t o

8

–4

h n

9 10 11 Positive Index

String

Negative Index–3 –2 –1

Backward indexing

Forward indexing

Fig. 1.5: String Representation in Python

Re
vi

ew
 o

f P
yt

ho
n

Ba
si

cs

1.25

Strings are immutable, i.e., we cannot modify/change the contents of a string after its creation.
In other words, we can say, Item assignment is not supported in strings.

1.10.1 String Operations

String can be manipulated using operators like concatenate (+), repetition (*), and membership
operators like in and not in. Let us take a quick look at the important string operations available
in Python:

Operator Name Description

+ Concatenation Adds or joins two strings

* Repetition Concatenates multiple copies of the same string

in/not in Membership Returns true if a character exists in the given string

[:] Range(start, stop, [step]) Extracts the characters from the given range

[ ] Slice[n : m] Extracts the characters from the given index

Let us understand these operations using the example given below:

Example 18: Consider two strings:
str1 = "Hello"

str2 = "Python"

Observe the result obtained after performing important string operations.

1.10.2 String Slicing

Slicing is used to retrieve a subset of values. A slice of a string is nothing but a substring. This
extracted substring is termed as slice. A chunk of characters can be extracted from a string
using slice operator with three indices in square brackets separated by colon ([:]).

The syntax is:

Syntax:

   String_name[start:end:step]

Here,
	 •	 start—starting integer where the slicing starts
	 •	 end—position till which the slicing takes place. The slicing stops at index end-1.
	 •	 step—integer value which determines the increment between each index for slicing.
start, stop values are optional. If a single parameter to passed, start and end are set to None.

Co
m

pu
te

r S
ci

en
ce

 w
it

h
Py

th
on

–X
II

1.26

Example 19: Consider a string str1 with the following content:
str1 = "Hello Python"
The various slice operations and the output retrieved are shown below:

1.10.3 Built-in String Methods

Python provides the following built-in methods to manipulate strings:

Method Description Example

isalpha() Returns True if the string
contains only letters,
otherwise returns False.

Syntax:
str.isalpha()

>>> str = "Good"
>>> print(str.isalpha())
True
#Returns True as no special character or digit is present
in the string.
>>> str1="This is a string"
>>> print(str1.isalpha())
False
#Returns False as the string contains spaces.
>>> str1="Working with...Python!!"
>>> print(str1.isalpha())
False
#Returns False as the string contains special characters
and spaces.

isdigit() This method returns True if
string contains only digits,
otherwise False.

Syntax:
str.isdigit()

>>> str1="123456"
>>> print(str1.isdigit())
True
#Returns True as the string contains only digits.
>>> str1 = "Ram bagged 1st position"
>>> print(str1.isdigit())
False
#Returns False because apart from digits, the string
contains letters and spaces.

Re
vi

ew
 o

f P
yt

ho
n

Ba
si

cs

1.27

lower() Converts all the uppercase
letters in the string to
lowercase.

Syntax:
str.lower()

>>> str1= "Learning PYTHON"
>>> print(str1.lower())
learning python
#Converts uppercase letters only to lowercase.
>>> str1= "learning python"
>>> print(str1.lower())
learning python
#if already in lowercase, then it will simply return the
string.

islower() Returns True if all letters in
the string are in
lowercase.

Syntax:
str.islower()

>>> str1 ="python"
>>> print(str1.islower())
True
>>> str1 = "Python"
>>> print(str1.islower())
False

upper() Converts lowercase letters in
the string to uppercase.

Syntax:
str.upper()

>>> var1= "Welcome"
>>> print(var1.upper())
WELCOME
>>> var1= "WELCOME"
>>> print(var1.upper())
WELCOME
#if already in uppercase, then it will simply return the
string.

isupper() Returns True if the string is in
uppercase.

Syntax:
str.isupper()

>>> str1= "PYTHON"
>>> print(str1.isupper())
True
>>> str1= "PythOn"
>>> print(str1.isupper())
False

lstrip()
or
lstrip(chars)

Returns the string after
removing the space(s) from
the left of the string.

Syntax:
str.lstrip()
or
str.lstrip(chars)

chars (optional) – a string
specifying the set of
characters to be removed
from the left. All
combinations of characters
in the chars argument are
removed from the left of the
string until the left character
of the string mismatches.

>>> str1= " Green Revolution"
>>> print(str1.lstrip())
Green Revolution
#Here no argument was given, hence it removed all
leading whitespaces from the left of the string.
>>> str2= "Green Revolution"
>>> print(str2.lstrip("Gr"))
een Revolution
>>> str2= "Green Revolution"
>>> print(str2.lstrip("rG"))
een Revolution
#Here all elements of the given argument are matched
with the left of the str2 and, if found, are removed.

Co
m

pu
te

r S
ci

en
ce

 w
it

h
Py

th
on

–X
II

1.28

rstrip()

or

rstrip(chars)

This method removes all the
trailing whitespaces from the
right of the string.

Syntax:
rstrip()
or
str.rstrip(chars)

chars (optional) – a string
specifying the set of characters
to be removed from the right.
All combinations of characters
in the chars argument are
removed from the right of
the string until the right
character of the string
mismatches.

>>> str1= "Green Revolution"
>>> print(str1.rstrip())
Green Revolution
#Here no argument was given, hence it removed all
leading whitespaces from the right of the string.
>>> str1= "Computers"
>>> print(str1.rstrip("rs"))
Compute

#Here the letters ‘rs’ are passed as an argument; it is
matched from the right of the string and removed
from the right of str1.

isspace() Returns True if string
contains only whitespace
characters, otherwise returns
False.

Syntax:
str.isspace()

>>> str1= " "
>>> print(str1.isspace())
True
>>> str1=" Python "
>>> print(str1.isspace())
False

istitle() The istitle() method doesn’t
take any arguments. It
returns True if string is
properly “titlecased”, else
returns False if the string is
not a “titlecased” string or an
empty string.

Syntax:
str.istitle()

>>> str1= "All Learn Python"
>>> print(str1.istitle())
True

>>> s= "All learn Python"
>>> print(s.istitle())
False
>>> s= "This Is @ Symbol"
>>> print(s.istitle())
True

>>> s= "PYTHON"
>>> print(s.istitle())
False

join(sequence) Returns a string in which the
string elements have been
joined by a string separator.

Syntax:
str.join(sequence)

sequence – Join() takes
an argument which is of
sequence data type
capable of returning its
elements one at a time.
This method returns a
string, which is the
concatenation of each
element of the string and
the string separator between
each element of the string.

>>> str1= "12345"
>>> s= "–"
>>> s.join(str1)
'1–2–3–4–5'
>>> str2= "abcd"
>>> s= "#"
>>> s.join(str2)
'a#b#c#d'

Re
vi

ew
 o

f P
yt

ho
n

Ba
si

cs

1.29

swapcase() This method converts
and returns all uppercase
characters to lowercase
and vice versa of the given
string. It does not take any
argument.

Syntax:
str.swapcase()

The swapcase() method
returns a string with all the
cases changed.

>>> str1= "Welcome"
>>> str1.swapcase()
'wELCOME'
>>> str2= "PYTHON"
>>> str2.swapcase()
'python'
>>> s= "pYThoN"
>>> s.swapcase()
'PytHOn'

partition
(Separator)

Partition method is used to
split the given string using
the specified separator and
return a tuple with three
parts: Substring before the
separator; separator itself; a
substring after the separator.

Syntax:
str.
partition(Separator)

Separator: This argument is
required to separate a string.

If the separator is not
found, it returns the string
itself, followed by two
empty strings within the
parentheses, as tuple.

>>> str3= "xyz@gmail.com"
>>> str3.partition(' ')
('xyz@gmail.com', '', '')
#Here separator is not found, returns the string itself,
followed by two empty strings.

>>> str2= "Hardworkpays"
>>> str2.partition('work')
('Hard', 'work', 'pays')

#Here str2 is separated into three parts—

1) the substring before the separator, i.e., ‘Hard’

2) the separator itself, i.e., ‘work’, and

3) the substring part after the separator, i.e., ‘pays’.

>>> str5= str3.partition('@')
>>> print(str5)
('xyz', '@', 'gmail.com')

>>> str4= str2.partition('–')
>>> print(str4)
('Hardworkpays', '', '')

In internal storage or the memory of computer, the characters are stored in integer value. A specific

value is used for a given character and it is based on ASCII code. There are different numbers assigned

to capital letters and small letters.

Python provides two functions for character encoding: ord() and chr().

ord() ord() – function returns the
ASCII code of the character.

>>> ch= 'b'
>>> ord(ch)
98
>>> ord('A')
65

chr() chr() – function returns
character represented by the
inputted ASCII number.

>>> chr(97)
'a'
>>> chr(66)
'B'

Co
m

pu
te

r S
ci

en
ce

 w
it

h
Py

th
on

–X
II

1.30

Example 20: Program to input a string and count the number of uppercase and lowercase letters.

Explanation:

The above program counts the total number of lowercase and uppercase letters in an inputted
string. The string can contain a mix of characters, numbers or any other special characters.
The inputted string is stored in the variable ‘str 1’. Two variables are initialized to 0 for storing
the number of uppercase and lowercase letters respectively. The loop shall iterate till the end
of the string which is taken into account for calculating its length. For checking if a character is
lowercase or uppercase, we have used two inbuilt methods, islower() & isupper() of the string
library. If the character is in lowercase, the counter var ‘lwrcase’ shall be incremented and for
uppercase, var ‘uprcase’ shall be incremented and finally the count shall be displayed using
appropriate print() statements.

1.11 LISTS
Like strings, lists are a sequence of values. A list is a data type that can be used to store any
type and number of variables and information. The values in the list are called elements or
items or list members.
A list in Python is formed by enclosing the values inside square brackets ([]). Unlike strings,
lists are mutable, i.e., values in a list can be changed or modified and can be accessed using
index value enclosed in square brackets.

Syntax:

   [list_name] = [item1,item2,item3...,itemn]

For example, L1    =    [10,    20,    30,    40]

Consider list1 containing 10 elements.
list1 = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

