ASSIGNMENT CHEMISTRY

☑ 3 Marks Questions

24. (i) The cell in which the following reaction occurs:

$$2\mathrm{Fe}^{3+}(aq) + 2\mathrm{I}^{-}(aq) \longrightarrow 2\mathrm{Fe}^{2+}(aq) + \mathrm{I}_{2}(s)$$

has $E_{\text{cell}}^{\circ} = 0$. 236 V at 298 K. Calculate the standard Gibbs energy of the cell reaction. (Given, 1 F = 96500 C mol⁻¹)

- (ii) How many electrons flow through a metallic wire if a current of 0.5 A is passed for 2 h?
 (given, 1 F = 96500 C mol⁻¹)
 All India 2017
- (i) Calculate the mass of Ag deposited at cathode when a current of 2A was passed through a solution of AgNO₃ for 15 min.
 (Given: Molar mass of Ag = 108 g mol⁻¹ 1F = 96500 C mol⁻¹).
 - (ii) Define fuel cell. Delhi 2017
- 26. (i) Calculate ΔG° for the reaction, $\operatorname{Mg}(s) + \operatorname{Cu}^{2+}(aq) \longrightarrow \operatorname{Mg}^{2+}(aq) + \operatorname{Cu}(s)$ (Given, $E_{\operatorname{cell}}^{\circ} = +2.71 \text{ V}, 1 \text{ F} = 96500 \text{ C mol}^{-1})$
 - (ii) Name the type of cell which was used in Apollo space programme for providing electrical power. Delhi 2014
- **27.** (i) Write two advantages of H₂—O₂ fuel cell over ordinary cell.
 - (ii) Equilibrium constant (K_C) for the given cell reaction is 10. Calculate $E_{\rm cell}^{\circ}$.

$$A(s) + B^{2+}(aq) \Longrightarrow A^{2+}(aq) + B(s)$$

Foreign 2014

28. What type of battery is lead storage battery? Write the anode and cathode reactions, and the overall cell reaction occurring in the operation of a lead storage battery.

Delhi 2012, 2011, 2009; Foreign 2012; All India 2009

- 29. An aqueous solution of copper sulphate CuSO₄ was electrolysed between platinum electrodes using a current of platinum electrodes using a current of 0.1287 A for 50 min.

 [Given, atomic mass of Cu = 63.5 g mo]
 - (i) Write the cathodic reaction.(ii) Calculate

(a) Electric charge passed during electrolysis.

(b) Mass of copper deposited at the cathode.
[Given, 1 F = 96500 C mol⁻¹]

All India 2011C

30. Calculate the strength of the current required to deposit 1.2 g of magnesium from molten $MgCl_2$ in 1 h. [1 F = 96500 C mol⁻¹, atomic mass of Mg = 24.0] Delhi 2009C

5 Marks Questions

- 31. (i) Define the following terms:
 - (a) Molar conductivity (Λ_m)
 - (b) Secondary batteries
 - (c) Fuel cell
 - (ii) State the following laws:
 - (a) Faraday's first law of electrolysis
 - (b) Kohlrausch's law of independent migration of ions Delhi 2015C
- 32. (i) Predict the products of electrolysis each of the following:
 - (a) An aqueous solution of AgNO₃ with platinum electrodes.
 - (b) An aqueous solution of H₂SO₄ with platinum electrodes.
 - (ii) Estimate the minimum potential difference needed to reduce Al_2O_3 at 500°C. The Gibbs energy change for the decomposition reaction $\frac{2}{3}Al_2O_3 \longrightarrow \frac{4}{3}Al + O_2$ is 960 kJ. (F = 96500 C mol⁻¹) Delhi 2014C